

开发板 Core_Air780EP 使用说明

文档名	开发板 Core_Air780EP 使用说明		
作者	Mamengyang		
修改日期	2024.10.25		
版本	1.0.1		
文档状态	释放		

概述
开发板配置
管脚定义4
外设分布
使用说明8
供电8
开机关机9
固件升级 11
天线12

概述

CORE-AIR780EP 开发板是合宙通信推出的基于 Air780EP 模组所开发的,包含电源, SIM 卡,USB,天线,音频等必要功能的最小硬件系统。以方便用户在设计前期对 Air780EP 模块进行性能评估,功能调试,软件开发等用途。

开发板配置

- 一代 IPEX 天线连接器
- 4G 弹簧天线
- 一个下载/调试串口,三个通用串口
- IO 口默认电平 3.3V (1.8V 可调)
- 支持 USB 5V 直接供电
- 自弹式 Micro SIM 卡座
- 1个电源指示灯,1个网络指示灯
- 标准 2.54mm 邮票孔,兼容排针
- 模组厚度 1.7mm
- 1 路 I2S 接口,支持外置 codec
- 2路 SPI 接口
- 3个按键(开机键,下载模式键,复位键)
- 4 路 ADC 接口
- 2路I2C接口

管脚定义

注意: 1. 以上 PinOut 图示, 对应的 V1.8 的开发板, 版本号在板子丝印上可查阅。

2. V1.8 的开发板 17 脚改为 VBAT。

管脚功能说明:

编号	名称	模块管脚 编号	描述	复用功能	备注	
1	GND		参考地			
2	5V		5V 输入		与 USB 5V 管脚连 通	
3	ADC0	9	模数转换输入通道0		若超量程需要外部	
4	ADC1	96	模数转换输入通道1		电阻分压	
5	AUX_TXD	29	AUX_UART 发送数据	GPIO13	不田则县穴	
6	AUX_RXD	28	AUX_UART 接收数据	GPIO12	个用则总工	
7	3.3V		3.3V 输出		内部 LDO 输 出,<100mA	
8	GND		参考地			
9	MAIN_DTR	19	主串口数据终端就绪, 地有效,将模块从休眠 状态唤醒	GPIO22	不用则悬空 休眠状态下可用	
10	LCD_CS	52	LCD 片选信号	GPIO35	不用则悬空	
11	LCD_RS	51	LCD 命令/数据选择信 号	GPIO38	不用则悬空	
12	LCD_RST	49	LCD 复位信号	GPIO36	不用则悬空 不能与 PIN21 同时 使用	
13	LCD_DATA	50	LCD 数据信号	GPIO37	不用则悬空	
14	LCD_CLK	53	LCD 时钟信号	GPIO34	不用则悬空	
15	3.3V		3.3V 输出			
16	GND		参考地			
17	5V		5V 输入			
18	MAIN_RI	20	主串口数据振铃信号	GPIO24	不用则悬空 休眠状态下可用	
19	GND		参考地			
20	3.3V		3.3V 输出			
21	RESET	15	模块复位信号			
22	I2C_SDA	66	I2C 数据信号	GPIO19	不用则悬空	
23	I2C_SCL	67	I2C 时钟信号	GPIO18	小小は米が安工	
24	DBG_RXD	38	调试串口数据输入	GPIO16	只能用于调试信息	
25	DBG_TXD	39	调试串口数据输出	GPIO17	的监控	
26	GND		参考地			
27	NET_STATUS	16	网络状态指示信号	GPIO27	不用则悬空 休眠状态下可用	
28	SPK+		语音输出+		驱动 32 欧姆受话	
29	SPK-		语音输出-		器,无内置音频功放	
30	MAIN TXD	18	主串口数据发送	GPIO19	不用则悬空	

wiki.openLuat.com

31	MAIN_RXD	17	主串口数据接收	GPIO18
32	GND		参考地	

外设分布

电源指示灯	USB接口 - 网络指示灯
下载模式按键一	复位按键 开机按键
	GNSS ipexi连接器 4G 弹簧天线

顶视图

底视图

使用说明

供电

● 通过 USB 接口直接供电

给 CORE-AIR780EP 开发板最直接的方式是直接用 type-C 的 USB 数据线连接电脑的 USB 接口,通过电脑的 USB 接口直接给开发板提供 5V 供电。开发板内部集成 DCDC 开关 电源,将 5V 输入转换为 4V 给 Air780EP 模块供电。当开发板有外部供电时,电源指示灯会 亮起,表示开发板已上电。

请注意

推荐使用 PC 的 USB3.0 接口给开发板供电。

● 通过开发板 5V 管脚

CORE-AIR780EP 开发板同时在两排邮票孔管脚处引出 5V 电源输入管脚,方便用户可 以通过 5V 管脚和 GND 管脚通过外部电源给开发板供电,以方便进行功耗电流测试等。5V 管脚与开发板上 USB 接口处的 5V 管脚相通,因此在外部 USB 插入的情况下,禁止用 5V 供电,以防对 PC 设备造成损坏。

管脚编号							營脚编号
日小小小同了	GND	1		Saunna 🦉 💽	17	5V	
	5V	2			18	MAIN_RI	20
9	ADC0	3		1 San 2 💽 💽	19	GND	
96	ADC1	4		add a 🖉 🛄	20	3V3	
29	AUX_TXD	5		antina 👔 🔤	21	RESET	15
28	AUX_RXD	6	0		22	I2C_SDA	66
	3V3	7			23	I2C_SCL	67
	GND	8	20		24	DBG_RXD	38
19	MAIN_DTR	9	0	2012 CMILL ID:2023Cb1169 (M)	25	DBG_TXD	39
52	LCD_CS	10	2.0	MB: 864536072618695	26	GND	

请注意

5V 供电管脚供电电压不能超过 5.5V, 否则会有开发板烧毁的风险

开机关机

● 用按键开关机

CORE-AIR780EP 在满足供电条件之后,长按开机键(1.5S)以上就可以触发开机。可以观察网络指示灯,不停闪烁,表示开发板已经正常开机。

开机后,如果再长按开机键(1.5S)以上触发关机流程,观察网络指示灯,停止闪烁表示关机动作结束

• 上电自动开机

想让开发板上电同时自动开机,这种方式也能实现,但是需要调整开发板上的电阻了。

注意在开机按键下有一颗空贴的电阻位置,在这个位置上(R6)手动焊接 0402 0 欧姆 电阻即可,会将 Air780EP 的 POWKEY 信号拉低,也就实现开发板上电开机。

请注意

改成上电开机后,开机按键不再有任何作用。上电开机的操作不推荐,仅仅限于有硬件基础

开发者调试用

固件升级

CORE-AIR780EP 开发板固件升级可以直接通过 USB 口进行,使用 Luatools 工具进行 固件升级更新。按照以下步骤:

- 1. 首先 USB 连接 PC,保持上电但不开机状态。
- PC 上打开 Luatools 工具,选择好要更新的固件, (具体操作见 Luatools 下载调试工具,本文仅着重描述开发板的操作)
- 3. 按住下载模式按键(boot键)不放,同时再长按开机键开机,这时开发板会进入下 载模式,luatool下载进度条会开始跑,这时可以松开 boot 按键。直到工具提示下载 完成。

如果,未能成功进入下载模式,而是进入正常开模式,这时可以按住 boot 键,再短 按复位按键,让开发板重启,重新进入下载模式。

- 4. 如何判断有没有进入下载模式:可以通过 PC 端的设备管理器中虚拟出来的 USB 断开 数量来判断:
- 正常开机模式:

- 下载模式:

天线

为了方便用户使用, CORE-AIR780EP 开发板默认自带弹簧螺旋 4G 天线, 无需用户额 外适配购买天线。

请注意

自带弹簧螺旋 4G 天线由于条件所限,射频性能不是最优,仅仅用于方便软件功能调试而使用,不代表 Air780EP 模块的真实射频性能。如果有射频传导测试的评估需求,请联系合宙官方人员,提供射频测试专用评估板。

针对部分用户有对 Air780EP 模块硬件射频评估测试需求, CORE-AIR780EP 开发板还专门设计了一个1代 IPEX 射频座,可以用于直接测试射频传导性能,或者外接专业的4G 天线,做其他应用测试用。

如果要使用板子上的 IPEX 射频座,还得对开发板做如下操作:

将天线走线上串联的 33pf 电容焊接到旁边的焊盘

改动后的焊盘如下图:

相信能做专业射频测试的客户这种程度的整改应该不在话下。同时天线走线上还预留一 组II型匹配,以便做天线匹配需要。